In considering heat effects upon the
differential couple, the equations of heat
balance employed by Borchardt and
Daniels are used ().

CpdTy = dIl + K.(Ts — To)dt (1)
CppdTy = K (Ty — T)dl (2)

Ty, Ty, and Ty are temperatures of the
reference thermocouple, sample thermo-
couple, and air bath (furnace thermo-
couple), respectively (see igure 1).
C,.. is the total heat eapacity of the
reference thermocouple (ineluding eup)
and €., is the total heatl eapacity of the
measuring thermocouple including eup.
The absolute values which will be ob-
tained are dependent upon the effects of
thermocouple symmetry, size, and shape
of sample containers and furnace, when
these variables ean be reduced to con-
stants as in o fixed system,

Iiquation 1 shows that any increase
in enthalpy of the sample side of the
differentinl thermocouple is due to the
total enthalpie effeets of sample plus
the heat transferred to the thermocouplo
by the surroundings,  Fauation 2 de-
seribes the enthalpie effeets on the ref-
erence side exeepl that the dIf term is
necessarily not present. K, is the heat
transfer  coeflicient  for  the  sample
(measuring) thermocoup'e and K, is the
heat transfer coeflicient, for the reference
side.

The assumptions governing  the
validity of these equations to the
present  system are:- the differential
thermocouples are fixed; a small sample
size is employed; the sample does not
have to be diluted; the sample holder is
capable  of maintaining  even  heat
‘distribution  consistent.  with  the
demands  of the temperature pro-
grammer; and linear heating rates from
one run to the next can be realized.

There are two situations which we
must consider—the absence of a sample
and the presence of a sample.  Let us
consider the first case where a sample is
not present in the conta‘ner. In this
instance there can be no heat evolution
or absorption except that due to slightly
different. heat capacities of the thermo-
couples and empty containers caused by
symmetry and size considerations.

Then, any change in base line from
the horizontal due to differences in heat
capacity may be expressed as:

Cp,ldT2 = Cp.rdTl =
K,(Ty — Ty)dt —
K, (Ty — Tydt  (3)

where C,.dT: — C,.dT\ = CdT
and C, = heat capacity of the system.
K, and K,, the heat transfer coefficients
from T; to T; and T to Ty, should be
equal even under dynamic conditions
providing linear reproducible program-
ming rates exist, thermal gradients with-
in the holder are absent, and the total
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Figure 1.

Ty == Roference temperature
T, = Sample temperature
T; = Air bath temperature

heat capacity of the air bath is more
than suflicient to provide the thermal
energy required {o  maintain  nearly

cquilibrium  conditions  within  the
system,
Rearranging quation 3 gives
CodT = K(T) = To)dl (4)

where K o= K, = K, # 0

This s true providing the previous
assumptions are true and K, and K, are
temperature  independent  over  the
temperature range of interest (d7).
This is indeed true as will be shown
later,

Thus Ilquation 4 becomes

Cn(wlw aimple) =

K(T, = T

cal./°C. " (5)

dT
where

K = heat transfer coefli-
cient of system in
cal./mm.2,

(o = heat capacity of sys-
tem in cal./°C.

ar = temperature range of
interest

(Ty — Ty)dt = ATdt; and over a

time interval, say
L,

area encompassed by
base line curve and
constructed  hori-
zontally, measured
over temperature
range of interest.

The K value does not incorporate a
time-temperature function since the
chart speed of the recorder and the re-
sponse of the DC amplifier and recorder
were considered fixed.

We now consider the second case
where o sample has been placed in the
proper container and the enthalpic
effects will be registered on T, which is
one side of the differential couple.

We now choose a time (temperature)
interval where dH = 0—i.e., the heat of
transformation is 0 because the sample
is not undergoing a chemical or physical
transformation. Thus, the equation

to
f ATdt
¢
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deseribing the heat capacity due to the
presence of a sample is identical to
Equation 5. By evaluating Fquation
5 without sample and subsequently with
sample and subtracting, the heat capa-
city of the sample is

cv = Cpwio
(System effects) — (System -+
sample cffects)  (6)

')—Cv(/ ple) =

_ KaTu KAT
dT (w/o snmplo) dT (w/sample)
K
- ;iT (AT(u)nmn due to anmple (7)

But there are thermal effects within
the sample.  Through the sample itself
o thermal lag oceurs and the rate at
which heat is received by the measuring
side of the differentinl couple becomes
highly dependent. upon sample size,
heating rate, and the thermal diffusivity
(@) of the sample,  T'he lng experienced
in precisely why the speeifie heat ean he
mensured sinee it is charneleristic of
ench materinl,

Therefore, we must take into account,
thermal effeets within the sample and
consider the diffusion effects by means
of the following equation (10, 16, 32).

dT k dT

il ®
where
Z—Z—v = change of temperature of

sample with respect to time

k= thermal conductivity of sam-
ple

p = density of sample

specific heat of sample

Q
=
I

rate of change of the tempera-

ture through the sample

The average heat capacity of the
sample can now be defined by solving for
C, in Equation 8 and adding to Equa-
tion 7.

= dt k (d*T\ dt
Cp = KATﬁ,'f‘;(E,)ﬁ, (9)

(sample effects) -+ (sample
thermal diffusivity effects)

k. amr K
(" ATk F)AT‘” T

(10)

Allowing for sample size Equation 10
becomes

- K'K(AT dt)nren due to sample

pgdT (an

Cs

which describes the average specific
heat of the sample.
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